Approximate Riemannian Conjugate Gradient Learning for Fixed-Form Variational Bayes
نویسندگان
چکیده
Variational Bayesian (VB) methods are typically only applied to models in the conjugate-exponential family using the variational Bayesian expectation maximisation (VB EM) algorithm or one of its variants. In this paper we present an efficient algorithm for applying VB to more general models. The method is based on specifying the functional form of the approximation, such as multivariate Gaussian. The parameters of the approximation are optimised using a conjugate gradient algorithm that utilises the Riemannian geometry of the space of the approximations. This leads to a very efficient algorithm for suitably structured approximations. It is shown empirically that the proposed method is comparable or superior in efficiency to the VB EM in a case where both are applicable. We also apply the algorithm to learning a nonlinear state-space model and a nonlinear factor analysis model for which the VB EM is not applicable. For these models, the proposed algorithm outperforms alternative gradient-based methods by a significant margin.
منابع مشابه
Natural Conjugate Gradient in Variational Inference
Variational methods for approximate inference in machine learning often adapt a parametric probability distribution to optimize a given objective function. This view is especially useful when applying variational Bayes (VB) to models outside the conjugate-exponential family. For them, variational Bayesian expectation maximization (VB EM) algorithms are not easily available, and gradient-based m...
متن کاملAlgorithmic improvements for variational inference
Variational methods for approximate inference in machine learning often adapt a parametric probability distribution to optimize a given objective function. This view is especially useful when applying variational Bayes (VB) to models outside the conjugate-exponential family. For them, variational Bayesian expectation maximization (VB EM) algorithms are not easily available, and gradient-based m...
متن کاملA Saddle Point Approach to Structured Low-rank Matrix Learning in Large-scale Applications
We propose a novel optimization approach for learning a low-rank matrix which is also constrained to lie in a linear subspace. Exploiting a particular variational characterization of the squared trace norm regularizer, we formulate the structured low-rank matrix learning problem as a rank-constrained saddle point minimax problem. The proposed modeling decouples the lowrank and structural constr...
متن کاملAuto-Encoding Variational Bayes
How can we perform efficient inference and learning in directed probabilistic models, in the presence of continuous latent variables with intractable posterior distributions, and large datasets? We introduce a stochastic variational inference and learning algorithm that scales to large datasets and, under some mild differentiability conditions, even works in the intractable case. Our contributi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Journal of Machine Learning Research
دوره 11 شماره
صفحات -
تاریخ انتشار 2010